Beta factor

Embedded Leverage in High Beta Funds and Management Fees

4.June 2020

Risk-averse investors want higher returns at any cost. If they are constrained and are not able to use leverage on their own, they will look for other ways to increase their performance. Recent academic paper written by Hitzemann, Sokolinski, Tai suggests, that such risk-seeking investor will search for a high-beta fund that will give them requested embedded leverage, even when that fund charge higher than average fees. Resultant net alpha of those high-beta funds is then negative, and this effect can explain the significant part of the underperformance of the overall mutual fund industry. And now, the logical question follows: As hedge funds have even higher fees than mutual funds, what is embedded in them, that constrained clients normally can’t access? Higher leverage and access to option-like return distribution? Maybe…

Authors: Hitzemann, Sokolinski, Tai

Title: Paying for Beta: Embedded Leverage and Asset Management Fees

Continue reading

Did Automated Trading Resurrect the CAPM?

28.February 2020

Once upon a time, there was everybody’s favourite finance tool in a town – Capital Asset Pricing Model, which was liked and used by nearly everyone. But a few decades ago, it went out of fashion. Easier accessibility of cheap finance databases allowed a lot of researchers to dig deeper into those data. They uncovered a tremendous amount of evidence for a lot of market anomalies not consistent with CAPM. A new research paper written by Park and Wang shows that CAPM is maybe not completely useless. The rise of automated trading causes individual stocks’ returns to align more closely with the market. Intraday correlation in the equity market is rising, and so is the fraction of firms’ returns that are explained by market returns …

Authors: Park, Wang

Title: Did Trading Bots Resurrect the CAPM?

Continue reading

Two Versions of CAPM

19.July 2019

This week's analysis of selected financial research paper contains more text and no picture, but we still think it's worth reading …

Authors: Siddiqi

Title: CAPM: A Tale of Two Versions

Link: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3350280

Abstract:

Given that categorization is the core of cognition, we argue that investors do not view firms in isolation. Rather, they view them within a framework of categories that represent prior knowledge. This involves sorting a given firm into a category and using categorization-induced inferences to form earnings and discount-rate expectations. If earnings-aspect is categorization-relevant, then earnings estimates are refined, whereas discount-rates are confounded with the category-exemplar. The opposite happens when discount-rates are categorization relevant. Earnings-focused approach such as DCF, generally used by institutional investors, leads to a version of CAPM in which the relationship between average excess return and stock beta is flat (possibly negative). Value effect and size premium (controlling for quality) arise in this version. Discount-rate focused approach such as multiples or comparables valuation, typically used by individual investors, leads to a second version in which the relationship is strongly positive with growth stocks doing better. The two-version CAPM accounts for several recent empirical findings including fundamentally different intraday vs overnight behavior, as well as behavior on macroeconomic announcement days. Momentum is expected to be an overnight phenomenon, which is consistent with empirical findings. We argue that, perhaps, our best shot at observing classical CAPM in its full glory is a laboratory experiment with subjects who have difficulty categorizing (such as in autism spectrum disorders).

Notable quotations from the academic research paper:

"Consider the following two empirical observations:

Firstly, stock prices behave very differently with respect to their sensitivity to market risk (beta) at specific times. Typically, average excess return and beta relationship is flatter than expected. It could even be negative. However, during specific times, this relationship is strongly positive, such as on days when macroeconomic announcements are made or during the night.

Secondly, a hue, which is halfway between yellow and orange, is seen as yellow on a banana and orange on a carrot. In this article, we argue that the two observations are driven by the same underlying mechanism.

The second observation is an example of the implications of categorization for color calibration. In this article, we argue that the first observation is also due to categorization, which gives rise to two versions of CAPM. In one version, the relationship between expected return and stock beta is flatter than expected or could even be negative, whereas in the second version, this relationship is strongly positive.

Categorization is the mental operation by which brain classifies objects and events. We do not experience the world as a series of unique events. Rather, we make sense of our experiences within a framework of categories that represent prior knowledge. That is, new information is only understood in the context of prior knowledge.

Here, in accord with cognitive science literature, we present a view of categorization that has both an upside as well as a downside, and apply this nuanced perspective to the capital asset pricing model (CAPM). If categorization is fundamental to how our brains make sense of information, then investor behavior, like any other domain of human behaviour, should also be viewed through this lens. This means that the traditional view that each firm is viewed in isolation needs to be altered. When an investor considers a firm, she views it within a framework of categories that represent prior knowledge. This involves sorting a given firm into a category based on attributes that are deemed categorization-relevant. Categorization-induced inferences help refine such attributes while confounding categorization-irrelevant attributes with the category-exemplar.

Valuation requires estimating earnings (cash-flows) potential and estimating discount-rates. Even among firms that sell similar products (same sector) some may have more similar earnings potential, whereas other may have more similar discount-rates. The former type may include firms with similar earnings-related fundamentals but very different levels of debt ratio and equity betas. Also, their multiples (generally related to inverse of the discount-rate) such as P/E, EV/Sales or EV/EBITDA could be very different. The latter type may include firms with similar debt ratios and equity betas or similar P/E and EV/EBITDA but quite different earnings or cash-flows fundamentals.

We argue that, an earnings-focused approach, such as discounted cash-flows (DCF), tends to categorize the former type of firms together, whereas, the relative valuation approach (RV) based on multiples such as P/E or EV/EBITDA tends to categorize the latter types of firms together. In other words, the choice of a valuation approach introduces a bias in how firms are categorized.

In this paper, we take discounted cash-flows (DCF) as the prototype of an earnings-potential focused approach, and valuation by multiples or relative valuation (RV) as the prototype discount-rate focused approach.

We show that when earnings aspect is categorization-relevant (as in DCF analysis), a version of CAPM is obtained, which displays a flatter or even negative relationship between stock beta and expected excess returns. Betting-against-beta anomaly is observed along with the value effect, as well as the size premium after controlling for quality (consistent with the findings in Asness et al 2018). We argue that this is the default version which typically prevails. While categorizing firms, if investors are focused on the discount rate aspect (as in RV analysis), then the discount-rates are refined whereas earnings estimates are confounded with the category-exemplar. A second version of CAPM arises. In this version, there is a strong positive relationship between beta and expected excess return.

One way to make sense of the co-existence of two versions is to classify investors as either earnings-focused or discount rate-focused. If earnings-focused investors dominate, then the first version is observed. If the discount-rate-focused investors dominate, then the second version is observed. Note, that earnings-focused approach (such as DCF) is typically employed by large institutional investors, whereas RV approach is associated with individual investors (and with sell-side equity analysts who publish research reports for individual investors).

If institutional investors are earnings-focused and individual investors are discount rate-focused, then the trading behavior of each type can be observed to make specific predictions:

1) Institutional investors typically avoid trading at the open and prefer to trade in the afternoon near the market close. The objective is to time the trade when the market is most liquid to avoid any adverse price impact. This means that trade at open is dominated by individual investors. So, one expects to see the relationship between stock beta and average return to be strongly positive (second version) overnight and flat or even negative (first version) intraday.

2) Institutional traders typically trade in the right direction prior to macroeconomic announcement days (suggesting superior information) with institutional trading volume falling sharply on macro-announcement days. As trade on such days is dominated by individual investors, one expects to see a strongly positive relationship (second version) on macro-announcement days.

3) The first version generally dominates intraday due to institutional investors being dominant. As the corresponding CAPM version comes with size and value effects, the prediction is that size and value are primarily intraday phenomena.

4) We show that, all else equal, discount rate-focused investors have higher willingness-to-pay than earnings-focused investors. If discount rate-focused investors dominate trade at open, whereas earnings-focused investors are active intraday, then one expects prices to typically rise overnight from close-to-open and fall intraday between open-to-close.

5) If momentum traders, who buy past winners and short past losers, are primarily individual investors, then one expects momentum to be an overnight phenomenon observed between close-to-open. This is because individual traders dominate trade at or near open.

"


Are you looking for more strategies to read about? Check http://quantpedia.com/Screener

Do you want to see performance of trading systems we described? Check http://quantpedia.com/Chart/Performance

Do you want to know more about us? Check http://quantpedia.com/Home/About


Follow us on:

Facebook: https://www.facebook.com/quantpedia/

Twitter: https://twitter.com/quantpedia

Youtube: https://www.youtube.com/channel/UC_YubnldxzNjLkIkEoL-FXg


 

Continue reading

Two Centuries of Global Factor Premiums

7.March 2019

Related to all major factor strategies (trend, momentum, value, carry, seasonality and low beta/volatility):

Authors: Baltussen, Swinkels, van Vliet

Title: Global Factor Premiums

Link: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3325720

Abstract:

We examine 24 global factor premiums across the main asset classes via replication and new-sample evidence spanning more than 200 years of data. Replication yields ambiguous evidence within a unified testing framework with methods that account for p-hacking. The new-sample evidence reveals that the large majority of global factors are strongly present under conservative p-hacking perspectives, with limited out-of-sample decay of the premiums. Further, utilizing our deep sample, we find global factor premiums to be not driven by market, downside, or macroeconomic risks. These results reveal strong global factor premiums that present a challenge to asset pricing theories.

Notable quotations from the academic research paper:

"In this paper we study global factors premiums over a long and wide sample spanning the recent 217 years across equity index (but not single securities), bond, currency, and commodity markets.

The first objective of this study is to robustly and rigorously examine these global factor premiums from the perspective of ‘p-hacking’.

We take as our starting point the main global return factors published in the Journal of Finance and the Journal of Financial Economics during the period 2012-2018: time-series momentum (henceforth ‘trend’), cross-sectional momentum (henceforth ‘momentum’), value, carry, return seasonality and betting-against-beta (henceforth ‘BAB’). We examine these global factors in four major asset classes: equity indices, government bonds, commodities and currencies, hence resulting in a total of 24 global return factors.4

We work from the idea that these published factor premiums could be influenced by p-hacking and that an extended sample period is useful for falsification or verification tests. Figure 1, Panel A summarizes the main results of these studies.

Global factor strategies

Shown are the reported Sharpe ratio’s in previous publications, as well as the 5% significance cutoff in the grey-colored dashed line. In general, the studies show evidence on the global factor premiums, with 14 of the 22 factors (return seasonality is not tested in bonds and currencies) displaying significant Sharpe ratio’s at the conventional 5% significance level.

Global factor strategies 1981-20111

Further, most of the studies have differences in, amongst others, testing methodologies, investment universes and sample periods, choices that introduce degrees of freedom to the researcher. To mitigate the impact of such degrees of freedom, we reexamine the global return factors using uniform choices on testing methodology and investment universe over their average sample period (1981-2011). Figure 1, Panel B shows the results of this replicating exercise. We find that Sharpe ratios are marginally lower, with 12 of the 24 factor premiums being significant at the conventional 5% level.

Global factor strategies 1981-2011


The second objective of this study is to provide rigorous new sample evidence on the global return factors. To this end, we construct a deep, largely uncovered historical global database on the global return factors in the four major asset classes. This data consists of pre-sample data spanning the period 1800- 1980, supplemented with post-sample data from 2012-2016, such that we have an extensive new sample to conduct further analyses. If the global return factors were unintentionally the result of p-hacking, we would expect them to disappear for this new sample period.

Our new sample findings reveal consistent and ubiquitous evidence for the large majority of global return factors. Figure 1, Panel C summarizes our main findings by depicting the historical Sharpe ratio’s in the new sample period. In terms of economic significance, the Sharpe ratios are substantial, with an average of 0.41. Remarkably, in contrast to most out-of-sample studies we see very limited ‘out-of-sample’ decay of factor premiums.

In terms of statistical significance and p-hacking perspectives, 19 of the 24 t-values are above 3.0,19 Bayesian p-values are below 5%, and the break-even prior odds generally need to be above 9,999 to have less than 5% probability that the null hypothesis is true."


Are you looking for more strategies to read about? Check http://quantpedia.com/Screener

Do you want to see performance of trading systems we described? Check http://quantpedia.com/Chart/Performance

Do you want to know more about us? Check http://quantpedia.com/Home/About


Follow us on:

Facebook: https://www.facebook.com/quantpedia/

Twitter: https://twitter.com/quantpedia


 

Continue reading

Tax Management is Extremely Important for Equity Factor Strategies

7.February 2019

Benjamin Franklin once said "… in this world nothing can be said to be certain, except death and taxes." and we completely agree with that quote. Traders and portfolio managers often strongly concentrate on a process of building the strategy which delivers the highest outperformance. But a lot of them forget to include taxes into that building process. And this can be a significant mistake as the following research paper shows:

Authors: Goldberg, Hand, Cai

Title: Tax-Managed Factor Strategies

Link: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3309974

Abstract:

We examine the tax efficiency of an indexing strategy and six factor tilts. Between June 1995 and March 2018, average value added by tax management exceeded 1.4% per year at a 10- year horizon for all the strategies we considered. Tax-managed factor tilts that are beta 1 to the market generated average tax alpha between 1.6% and 1.9% per year, while average tax alpha for the tax-managed indexing strategy was 2.3% per year. These remarkable results depend on the availability of short-term capital gains to offset. To a great extent, they can be attributed to loss harvesting and the tax rate differential.

Notable quotations from the academic research paper:

"In 1993, Rob Jeffrey and Rob Arnott asked a provocative question: Is an investor’s alpha big enough to cover its taxes? Arnott and Jeffrey pointed out that alpha generation typically requires high turnover, which erodes pre-tax alpha by increasing taxes, but this important fact tended to be overlooked by investors and researchers. Twenty-five years later, the situation has not changed too much.

Some principles of tax-aware investing, such as locating high-tax investments in tax-deferred accounts or using tax-free municipal bonds (instead of their taxable counterparts) as investments and benchmarks, are no more than common sense. Other principles of taxaware investing may rely on more sophisticated mathematics and economics, as well as more detailed knowledge of the complex and ever-changing US tax code. An example of the latter would be loss harvesting, which is a tax-aware option that combines delayed realization of capital gains with immediate realization of capital losses. A second timing option, which depends on the tax rate differential, involves the realization of long-term gains in order to facilitate the harvesting of short-term losses.

In the present study, we document the performance of after-tax return and risk profiles of an indexing strategy and six factor tilts over the period June 1995 to March 2018.7 We focus on active return, and our results rely on a number of methodological innovations. We mitigate the substantial impact of period dependence on results by launching each strategy at regular intervals over a long horizon, generating ranges of outcomes obtained in different market climates. We construct each portfolio with a one-step optimization that balances the competing imperatives of constraining factor exposures, harvesting losses, and minimizing tracking error (TE) to a diversified benchmark. We develop an after-tax performance attribution scheme that decomposes estate/donation and liquidation active returns into factor alpha, tax alpha, and tracking return. We measure the impact of the tax rate differential that affects tax-managed factor tilts.

Our results span several dimensions. First, we compare after-tax performance of tax-managed versions to tax-indifferent versions of each strategy. In back-tests, average value added by tax management during the period studied exceeded 1.50% per year at 10-year horizon for all the strategies we considered. This finding illustrates the potential power of loss harvesting and lets us move on to the more nuanced topic of the loss-harvesting capacities of different strategies.


tax-managed factor strategies

Figure 1 presents the average after-tax active return of the tax-managed versions of the strategies graphically. Overall, the best average performance was delivered by the Small Value strategy, but more than half the after-tax active return was due to factor alpha. On the basis of tax alpha, the strategies divide into the three groups. The highest average tax alpha was delivered by the indexing strategy. Each of the four beta-1 strategies captured at least 70% of the tax alpha in the indexing strategy, but the two lower-risk strategies captured less than 35%. The division is marked in the performance charts."


Are you looking for more strategies to read about? Check http://quantpedia.com/Screener

Do you want to see an overview of our database of trading strategies? Check https://quantpedia.com/Chart

Do you want to know how we are searching new strategies? Check https://quantpedia.com/Home/How

Do you want to know more about us? Check http://quantpedia.com/Home/About


Follow us on:

Facebook: https://www.facebook.com/quantpedia/

Twitter: https://twitter.com/quantpedia

Continue reading

Cash-Flow Beta Doesn’t Explain the Value Premium

31.January 2019

A new research paper related mainly to:

#26 – Value (Book-to-Market) Anomaly

Authors: Zhou

Title: Can Cash-Flow Beta Explain the Value Premium?

Link: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3244791

Abstract:

It is well documented that the cash flow beta can partly explain the source of the value premium. This paper presents an empirical test that cast doubt on this widely accepted belief. We double sort the stocks with their value and quality dimension and obtain four corner portfolios: (A) expensive quality, (B) cheap junk, (C) cheap quality and (D) expensive junk stocks. Prior research has shown that the value premium concentrates on cheap quality minus expensive junk (i.e. undervalued minus overvalued) but is not significant in cheap junk minus expensive quality stocks. If cash-flow beta is the source of the value premium, we would expect a larger cash-flow beta difference between the cheap quality and expensive junk portfolio. However, our empirical test shows that β_CF ((B) cheap junk) – β_CF ((A) expensive quality) >>β_CF ((C) cheap quality)-β_CF ((D) expensive junk). In other words, B minus A does not contribute to the profit of the value premium but contribute most to the difference of the cash flow beta between value and growth portfolios. Therefore, our result may serve as evidence that the cash flow beta may only spuriously explain the value premium. Or, at least, the cash-flow risk premium estimated in the portfolio regression approach is biased.

Notable quotations from the academic research paper:

"The value premium is one of the most important anomalies in the field of asset pricing. It is well known that the market beta fails to explain the value premium in the dataset after 1963.

Campbell and Vuolteenaho (2004) first proposed a “good beta, bad beta” model to solve this dilemma. They decompose the traditional market beta into two components: A good beta is the beta that measures a stock’s covariance with the temporary market movement or discount rate news, which is usually induced by changing market sentiment and varying risk aversion; A bad beta measures a stock’s comovement with market-wide fundamental cash-flow news. Campbell and Vuolteenaho (2004) and Cohen, Polk, Vuolteenaho(2009) argue that investors will regard wealth decrease induced by discount rate news as less significant because it tends to be temporary and the investors will be compensated by better future investment opportunity in an increased discount rate environment. A rational investor will demand higher return for the bad beta than the good beta.

Together with Campbell and Vuolteenaho (2004), Cohen, Polk, Vuolteenaho(2009), Campbell, Polk and Vuolteenaho (2010) and Da and Warachka (2009) among others, use different proxy for the cash-flow news and find that value stocks have a higher cash-flow beta than growth stocks. They conclude that cash-flow beta is one of the sources of the value premium. In this paper, we present an empirical test that question this widely accepted belief.

Our test double-sorts the stocks by value and quality dimension. In a conceptual simplified picture, Figure 1 illustrates four groups of stocks: (A) high quality, high price (expensive quality), (B) low quality, low price (cheap junk), (C) high quality, low price (cheap quality), and (D) low quality, high price (expensive junk). The price of portfolio A and B is thought to be “right” as their price is more aligned with the quality. Portfolio C (D) is the undervalued (overvalued) stocks.

value vs. quality

High price portfolio A and D are growth stocks, and low price portfolio B and C are value stocks. The value premium is the return of ( + ) − ( + ) = ( − ) + ( − ) . ( − ) and ( − ) are represented respectively by the light blue and dark blue arrow in Figure 1.

When the price is “right”, the value premium is not significant. The value premium is concentrated on ( − ), but not on ( − ). The return of the four portfolio have the relationship: R > R ≈ R > R .

If the cash flow beta is the source of the value premium and the value premium is concentrated on ( − ), one would naturally expect that f( ) − f( ) ≫ f( ) − f( ), in which, f is the cash flow beta. However, in our
test, we find the opposite results: f( ) − f( ) ≫ f( ) − f( ). ( − ) does not contribute to the profit of the value premium while f( ) − f( ) contribute the most to the cash-flow beta difference between the value and growth portfolio.

If the cash-flow beta represents a risk, we take most of the risk in the value-junk minus growth quality portfolio, but we earn no profit or even negative profit. We take very little or negative risk in the value-quality minus growth-junk portfolio, but we earn most of the profit of the value premium. We need to find a plausible explanation to this phenomena before we conclude that the cash-flow risk is the source of the value premium. A fundamental reason of our result is that, on the value dimension, higher return links to a higher cash-flow beta, while on the quality dimension, higher return links to a lower cash-flow beta."


Are you looking for more strategies to read about? Check http://quantpedia.com/Screener

Do you want to see an overview of our database of trading strategies? Check https://quantpedia.com/Chart

Do you want to know how we are searching new strategies? Check https://quantpedia.com/Home/How

Do you want to know more about us? Check http://quantpedia.com/Home/About


Follow us on:

Facebook: https://www.facebook.com/quantpedia/

Twitter: https://twitter.com/quantpedia

Continue reading

Subscribe for Newsletter

Be first to know, when we publish new content


    logo
    The Encyclopedia of Quantitative Trading Strategies

    Log in